

Biometric study of the Spanish ibex (*Capra pyrenaica*) female horns in Sierra Nevada. An open book of their model of life.

RUIZ, Carmen ; RAMÍREZ, Eva; GRANADOS, José Enrique; CANO-MANUEL, Francisco Javier; CANO-MANUEL, Alejandro; ESPINOSA, José; PÉREZ, Jesús M; SORIGUER, Ramón; RÁEZ-BRAVO, Arián y FANDOS, Paulino[.]

© Raulino Fandos Pa

INTRODUCTION

- ► Life cycle: birth → death
- Energy limited and many functions (growth, survival, reproduction)
- ► **Trade off**: energy compensation.

INTRODUCTION

- <u>Horn</u>: secondary sexual structure (high energetic costs).
- Annual growth with a repose period (rut): MEDRÓN.

- Influenced by intrinsic and extrinsic factors.
- Reflect conditions which involved the animal.
- Element of biologic information (secondary rings of lactation)

MATERIAL AND METHODS

- Collection sample area: Sierra
 Nevada Natural Space.
- Sample of 87 skulls
 (2003-2006).

- ► Allometric measures
- ► Medron Index
- ► Ovarian Index

MATERIAL AND METHODS

- Collection sample area: Sierra Nevada Natural Space.
- Sample of 87 skulls
 (2003-2006).
- Allometric measures
- Medron Index nº secondary rings / nº medrones -2
- Ovarian Index ovarian volume estimated
- Statistic analysis R program

► Basic statistics

TYPE	VARIABLES	MEAN	SD	n	
SKULL	LENGHT	22.70958	1.056516	71	
	WIDTH	122.49659	6.344580	82	
	OCCIPITAL	114.04159	5.267290	82	
	MOLAR LENGHT	64.93728	4.993236	81	
	MOLAR HEIGHT	10.26901	2.641489	81	
	INCISOR BONE	86.81100	4.893059	70	
					55
HORN	L1	48.01321	10.088245	81	-
	L2	25.32241	8.812148	79	
	L3	17.64139	6.639708	79	
	DIAMETER BASE	30.71256	3.465959	82	
	TOTAL LENGHT	131.20413	23.861617	80	-

Correlations between variables

► Relation between **horn length** and **age**

Medrón length according to type (position regarding the tip)

Tipo de medrón

► How affect mange and reproduction to the horn growth (using GLM)

p= 0,78

No significant differences

How affect reproduction to the horn growth using medrón type 3

Ovarian Index and Medrón Index: linear regression

p<0,05

Estimated volume

Reproduction performance

DISCUSSION

- Horn parameters show higher variability, because horn grows throughout life.
- Type: 1, 2 y 3 with highest variability. Animal invest in growth.
- Type 3 y 4, females 24kg and sexual maturity so invest in growth decreases

DISCUSSION

- Mange doesn't affect horn length. It is a one-time disease but horn grows throughout life.
- Medrón length is influenced by reproduction on type 3. At this age there are females in reproduction (24kg) and others still growing.
- Medrón Index allows to determine reproductive events and the date when they happen.

Grazie per l'attenzione Merci pour votre attention Gracias por vuestra atención!!

Paulino Fandos